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James E. Gubernatis, T-4; Thomas E. Booth, XCP-4 We developed a Monte Carlo method to estimate several of the largest or smallest eigenvalues and eigen-
vectors of a very large matrix. Our new method has three key components. One is a new procedure for 
estimating the eigenvalues, the second is a set of procedures for sampling a mixed sign function, and the 
third is an exact procedure for canceling signed random walkers over a region. Our new method for esti-
mating the eigenvalues does not require a step explicitly orthogonalizing the eigenpairs. This is valuable 
because the matrices we can treat are sometimes so large that we cannot store the information necessary 
to do this. The sampling of mixed signed functions is accomplished by using random walkers of mixed sign 
and transferring the sampling task to the promotion of interference between them, so that on the average 
they represent the nodal structure of the eigenvector.

Finding the eigenvalues and eigenvectors of a matrix is a ubiquitous 
task in science and engineering. These eigenpairs may represent, for 

example, the acoustic modes of a vibrating system such as a violin. For 
many applications, ample well-developed software is readily available 
to solve the eigenvalue problem and works very well provided computer 
memory is sufficient to store the matrix. Typically, this software returns 
all the eigenvalues and eigenvectors. In other applications the matrix 
becomes too large to store. Fortunately, just the largest or smallest 
eigenvalue often provides adequate valuable information. For this 
type of problem other techniques exist that are sometimes useable 
deterministically, but are most often based on the Monte Carlo method. 
The Monte Carlo method becomes essential when the matrix is too big 
to store. This type of problem, for example, occurs in calculations of 
what is called the ground state energy of atoms, molecules, and solids. 
The ground state energy is the smallest eigenvalue of the Hamiltonian 
matrix representing the physical systems. 

Knowing more than just one extremal eigenvalue is often desired 
and sometimes required. In designing a nuclear reactor, for example, 
the extremal eigenvalue is set by the details of the design, but the 
closeness of the second eigenvalue to it determines not only the 
stability of the design but also the efficiency of the Monte Carlo 
method simulating the design. Clearly, there are cases where it is 
better if one can find the second eigenvalue than if one cannot.

Determining more than one extremal pair of eigenvalues by Monte 
Carlo methods has been a difficult task. Monte Carlo is a method that 
draws "random samples" from probability distributions. By definition, 
probability distributions must be non-negative everywhere. The 

technique that the Monte Carlo method uses to compute the dominant 
extremal eigenvalue draws samples from the unknown eigenvector. 
Fortunately for many applications, the dominant eigenvectors have 
no negative components. The very nature of eigenvectors, however, 
requires all pairs to be mutually orthogonal. This means that some 
components of each subdominant eigenvector must be negative. 
Hence, direct extension of existing Monte Carlo methods to the 
computation of multiple extremal eigenpairs requires sampling from 
at least one eigenvector that is not a natural probability function.

We have succeeded in extending the most commonly used Monte Carlo 
method for extremal eigenvalue computations to the computations 
of multiple extremal eigenpairs [1-3]. By “multiple” we mean of the 
order of a half dozen or so. We have benchmarked our extension 
on problems drawn from classical statistical mechanics [1-3], 
nuclear engineering [4-7], and applied mathematics [8]. Besides 
providing extra desired or needed information about the problem, our 
method also accelerates the convergence to the dominant state.

Our extension has three key components. One is a new procedure for 
estimating the eigenvalues [4,5], the second is a set of procedures 
for properly sampling for a mixed-sign function for which the location 
of its zeroes is unknown [2,6-8], and the third is an exact procedure 
for canceling signed walkers over a region as opposed to at a point 
[7]. This last component is crucial for eigenvalue problems defined 
in the continuum, such as the nuclear criticality problem in nuclear 
engineering. Our new method for estimating the eigenvalues does 
not require a step at which we need to enforce the orthogonalization 
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Fig. 1. The fission density amplitude 
convergence for a nuclear fuel slab 
problem. The left and right slabs, of 
slightly different widths, are the nuclear 
fuels that fission neutrons. In between 
are slabs that more strongly scatter 
and absorb the neutrons.  The green 
curve is the result of running our new 
method or the standard method a very 
long time. The blue (standard) and red 
(new) show the state of the standard 
and new methods after 200 cycles of the 
simulation.



APPLIED MATHEMATICS AND FLUID DYNAMICS

www.lanl.gov/orgs/adtsc/publications.php 15

between eigenpairs explicitly. 
Not requiring this enforcement 
is valuable because the matrices 
we can treat are sometimes so 
large that we cannot store the 
information necessary to do this. The 
sampling of mixed-sign functions 
was accomplished by using random 
walkers of mixed sign, and transfers 
the sampling task to the promotion 
of interference between walkers 
of opposite signs so that on the 
average they represent the nodal 
structure of the eigenvector.

In Figs. 1 and 2 we show one of 
our benchmark calculations [6]. 
The generation of fission neutrons 
is being simulated in two slabs of 
nuclear fuel which are well, but 
not completely, shielded from each 

other. What makes this problem a difficult Monte Carlo simulation 
is the near equality of the dominant and subdominant eigenvalues, 
which causes the simulations to converge very slowly. In nuclear 
engineering parlance, the dominance ratio of the problem is nearly 
one. Our Monte Carlo method is an iterative one, meaning the iteration 
is cycled until it converges to sampling a stationary state. After the 
sampling becomes stationary, data is collected to compute estimates 
of important physical properties. In Fig. 1 we show how close the 
standard method is to convergence and our new one after 250 cycles. 
The exact solution has a specific asymmetry that our method has locked 
onto, but the standard method has not yet expressed. Figure 2 shows 
a sequence of partial convergences of the new method compared to 
the benchmark. For this problem we estimate that it takes 450 cycles 
to converge. We found that the standard method takes 5000 cycles.

Our first suite of benchmarks had dominant eigenvectors guaranteed to 
be positive so it was only the negativity of the subdominant state that 

was a concern. A next set of benchmarks was for problems where we 
knew the dominant state a priori. Here we created a modified algorithm 
using this information, thereby reducing the simulation to finding 
just the subdominant eigenpairs [8]. Curiously an application of this 
specialization is the Monte Carlo method itself. A measure of efficiency 
is the dominance ratio of the transition matrix defining the Monte 
Carlo steps [8]. By computing it we can compare the likely efficiency 
of different algorithms and, in some cases, by adjusting the parameters 
of a given algorithm we can improve its efficiency. Currently, we are 
studying problems where not even the dominant eigenvector is non-
negative. This is a common occurrence in many quantum mechanical 
problems where it is called the sign problem. In our other work we have 
already demonstrated that in some cases we can solve this problem.

Fig. 2.  The fission density amplitude 
convergence for a nuclear fuel slab 
problem. The slabs are the same as in 
Fig. 1, as is the green curve.  The red 
curves show the state of the new method 
after 10, 100, 200, and 400 cycles of 
the simulation. Convergence occurred at 
approximately 450 cycles.
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